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Compute-In-Memory (CIM) Definition 

Compute-in-memory (CIM) conceptually means doing compute directly in the memory. As will 
be discussed in detail in subsequent sections, the memory itself is capable of performing efficient 
computing, which incurs much less data transfers resulting in higher performance and much 
lower power. These characteristics make it very beneficial for AI and high-performance 
computing workloads. Sometimes In-memory compute (IMC) is used for this definition also, but 
as will be explained in detail care must be observed to distinguish some of the uses of this term 
with a more appropriate definition of compute-near-memory which has different characteristics. 

In contrast, near-memory computing architectures have the compute and memory blocks, even 
within the same chip or die, physically separate as standalone circuit blocks. CPUs, GPUs, or in 
general any modern AI ASICs (e.g., TPU, Inferentia, etc.) integrate various heterogeneous 
blocks and larger memory blocks—commonly referred to as caches and register files. These 
modern processors, SoCs, and AI accelerators are good examples of near-memory computing 
architectures. These follow what’s known as a von Neumann architecture, which requires the 
movement of data and instructions from memory to these heterogeneous computational units via 
direction from a sequencer and pipelining mechanism. The minimum block that computations 
can be measured from are a computation unit and the local register memory that provides the 
inputs for it to operate on. 

The traditional von Neumann architecture extends to the near memory concept at a system level, 
with separate compute and memory chips in a system. In traditional von Neumann, including 
near-memory architectures, data movement between compute and memory at board level or chip 
level becomes costly in terms of time and energy. In recent data-centric applications, such as 
Artificial Intelligence/Machine Learning (AI/ML), this problem is aggravated with large 
amounts of data movement.  

Figure 1 below is a side-by-side conceptual illustration of the three architecture types. The 
blocks show the minimum circuit blocks required for the different architectures to compute 
something. A primary difference that becomes visible is that CIM structures do not need 
additional memory to perform their computations. The basic structure can perform as memory 
and compute. 
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Feature 
Compute Near Memory  

(CNM) 
Compute-In-Memory 

(CIM) 

Computation directly on memory bit lines No Yes 

Distance between additional processing logic 
and memory 

~100-1000 microns ~10 microns 

Data movement overhead 
Lower than traditional 

architectures, but higher 
than CIM 

Lowest 

Technology maturity 
More mature, can be 

implemented with existing 
technologies 

New commercial 
architectures 

Performance improvement potential 
Lower than CIM, but still 

significant 
Highest 

 

 

Example Compute in Memory Architecture 
To solve the computation within memory challenge that brings CIM the power and performance 
benefits, we must look at memory and build on its capabilities. Two structures provide a base to 
build from. First is a structure called content-addressable-memory or CAM. The second deals 
with loosening some operational rules that is inherent to traditional memory. 

CAM is unique but a simple twist on standard memory. In standard memory a specific location is 
addressed for writing and then reading data. In CAM the read operation is not performed as with 
traditional memory. Data is presented to CAM, instead of an address, which the device will use 

Figure 1: Computing Architectural Types 
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to simultaneously compare all locations it has to that data and provide the result address if the 
data is stored in the part. This may sound weird, but if you think about it, that is similar to how 
our own brain compares things to memories: have I seen this before and if so, what is it, when 
did that occur, what should I remember about it. The CAM provides the first step of this flow. A 
specialized version of CAM adds a “don’t care” capability. That is, data that is sent for 
comparison can have certain portions or bits defined as “don’t care” if they match. This 
specialized operation again is similar to our brain operation where we may filter looking for our 
car in a parking lot and not caring about any vehicle that is not our make, model and color. This 
type of memory is called a ternary content addressable memory or TCAM. TCAM can be very 
useful for processing, but by itself it is just a memory with massive lookup capability. Providing 
the ability to loop back CAM data results for iterative searches or other processing starts to add 
discerning capability to this function. See Figure 2. 

 

 

Figure 2: CAM Pattern Processing within a Memory Construct 
From Patent US 8238173B2 
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Traditional memory, not CAM, has an array of memory and a unique address for each location. 
Memories are organized into rows and columns that is a decoding of the address and operate by 
reading charge from a particular bit at that intersection at a time. These are organized such that a 
particular memory width (multiple bits) is supported for a particular memory. This is often 8 bits, 
16 bits, 32 bits, or 64 bits. Let’s loosely define the width that the memory is configured as a 
“word”1. Only one bit is read per bit position in a word address. Only the specific result that is at 
the intersection of the row and column is read and latched into a result register for each bit 
location in the word. This is a standard rule in memory.  

In order to read the charge from a memory during the read process, memory lines holding bits 
are pre-charged or have other mechanisms to maintain charge. Instead of reading only one bit 
from a memory row as is done in a standard memory, if we were to allow multiple bits on a bit 
line to be triggered an interesting function occurs. Normally, this is prohibited as the state of 
several bits would collide and we wouldn’t read what we wanted. But if we understood what 
could happen and controlled it, then we could get logic functions to occur from memory reads 
like what is shown in Figure 3. In that figure we see that if multiple bits can be enabled at the 
same time onto the same bit line, then just the operation of reading the data incurs a NOR gate 
compute function. Since memory reads occur at the fastest time in a processor such a construct 
could be created to create a very fast Boolean logic processor with just the memory lines. 

 

Figure 3: Using Storage Cells to Perform Computation: Boolean 
From Patent US 8238173B2 
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Alternative Architectures 

Near-Memory Compute Architectures 
Since compute blocks or Arithmetic Logic Units (ALUs) are well known and implement 
compute structures the use of these with memory have been the traditional method of creating 
processors. Putting memory very close to these or in-between stages has been one way of 
improving local performance. 

GPUs and high performance CPUs with cache close to the processing elements are the best 
examples of near-memory compute architectures. Compute near memory can also be 
implemented as separate ALU structures with tightly coupled memory. In these structures the 
tensor core (in the GPU), or multiply/accumulate (MAC) or other ALU functions in special 
purpose parts are not inherent functions that occur in a special memory construct. The block 
diagram of the latest Nvidia GPU H100 is shown in Figure 4 below to provide an illustration.  

 

Figure 4: Nvidia H100 GPU Block diagram 
 

  

https://developer.nvidia.com/blog/nvidia-hopper-architecture-in-depth/
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Three key points to note:  

 
1) There are multiple types of cores surrounded by memory. Nvidia continues to evolve 
their  cores to support different data formats independently from the memory. For 
example, the H100 adds FP8/Int8 precision to the Tensor cores. The register file sizes can 
and do vary separately from the cores from part to part.  
 
2) The register files, L1 cache and shared caches are significantly farther from the tensor 
compute cores, which would result in higher energy spent in data transfers between 
compute and memory. 
 
3) As we get farther from the compute cores, more levels of cache are required to keep 
the cores busy with larger cache sizes but lower bandwidth as we get farther away. 
 

As one can see from the wide list of features and data format support, a general-purpose GPU or 
CPU may not deliver the best performance/watt/$ and overall TCO efficiency because not all 
resources would be used and memory transfers has to be routed to where processing is occurring. 

Another example of a near-memory AI accelerator is Google’s TPU ASIC. The block diagram of 
TPU v1 (Figure 5) clearly illustrates the near-memory architecture where the compute and 
memory blocks are physically separate. The concept is extended to subsequent generations 
where external HBM memory is used for storing data with scaler and vector units having limited 
internal SRAM memory. See Figure 6. 

 

            

        

  

Figure 5: TPU v1 Block Diagram Figure 6: TPU v5e Block Diagram 

https://cloud.google.com/blog/products/ai-machine-learning/an-in-depth-look-at-googles-first-tensor-processing-unit-tpu
https://cloud.google.com/tpu/docs/system-architecture-tpu-vm
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Similarly, many other AI accelerator ASICs developed by startups are mainly near-memory as 
illustrated in the generic block diagram of Figure 7 below. The ALUs could be multipliers, 
multiplier/accumulators (MACs), digital signal processing units (DSP), other general 
mathematical arithmetic logic units, or vector processing units. 

  

Figure 7: AI Accelerator ASIC Block Diagram   
  

Referring back to Figure 1, CNM structures are different from CIM in that the structure that 
does the compute is not a memory in itself. It requires memory to operate, and this memory is 
positioned closely. This memory is operating as register memory for the actual compute engine, 
so a CNM structure is a more optimized von Neumann structure with memory close by. The 
power savings in these structures diminishes as you scale up to more parts or connect to larger 
memory storage for bigger workloads. It is for this reason that GPUs and multi-core CPUs with 
large caches for each core and ALU end up consuming large amounts of data when scaled to 
large arrays. At the high system level, the benefits of the local cache are all but lost when there 
are so many transfers required to get the data to the actual compute structures. 

 
PIM (Processing-In-Memory) 
The Processing-in-Memory or PIM concept does attempt to reduce energy associated with data 
transfers between compute and memory, but in current form is merely a near-memory 
architecture and not true compute-in-memory, because computing is not performed on bit lines 
of the memory array. Instead, arithmetic logic units or ALUs are embedded close to the memory 
arrays as we have defined for CNM architectures. At the component level, the difference 
generally between CNM processors and PIM comes down to the device function—primarily 
being a processor (CNM) or memory (PIM). 

With current implementation, the computation is limited to fixed data formats, such as FP16 
multiply and add. As data formats continue to evolve, as highlighted with the formation of the 
recent  Microscaling Formats (MX) Alliance, there is a need to support flexibility in supporting 

https://www.opencompute.org/blog/amd-arm-intel-meta-microsoft-nvidia-and-qualcomm-standardize-next-generation-narrow-precision-data-formats-for-ai
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data formats with lower or mixed precision. Efficient software implementations could also be 
delayed due to changes required in the hardware to address new frameworks when using parts 
with pre-defined data formats. 

Samsung’s PIM integrates limited and non-programmable compute capability in their HBM2 
stack, which could limit flexibility and applicability in future.  

Analog CIM (Compute-In-Memory) 
Analog compute-in-memory leverages designed memory elements by using tunable resistors, 
such as Memristors, to perform computations directly inside the memory array itself.   

This architecture can be called true compute-in-memory (CIM) and can deliver computational 
efficiency, but there are many technical challenges with this approach as described below.  

Analog CIM has been explored by many research labs for a long time, and startups have started 
creating test parts for the direction, but due to challenges described below, this approach has 
hurdles to becoming mainstream in near future. See Figure 8. 

 

   

Figure 8: Computing Architectures 
 

The limitations of analog compute-in-memory architecture include the following: 

Compute precision: There are concerns about whether this approach can provide sufficient 
compute precision to ensure that application accuracies are not compromised. Increasing 
precision can be achieved by increasing the dynamic range of analog components, but due to 
noise limitations, this can lead to higher voltage requirements. Analog resistive memory devices 
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also suffer from device-to-device and cycle-to-cycle variances that can limit absolute precision 
(see Ref. 3, Le Gallo 2023). 

Integration with digital compute: The seamless integration of analog compute with digital 
compute is still a question, particularly in the context of achieving full end-to-end realization of 
deep neural networks on-chip. The ADC/DACs used for analog/digital conversion are 
susceptible to noise that limits the performance too. 

Latency and cost challenges: The architecture introduces challenges related to overall latency 
of computation. This occurs in charge and current domain architectures because of integration 
steps for results. For analog resistive memory devices, it results from the analog conversion 
steps. Cost too is a challenge, since most of the companies pioneering analog compute are small 
startups and the technology hasn’t been deployed in high volume to gain associated cost 
advantages. 

Design complexity: While analog compute-in-memory architecture offers some power 
advantages, its design and implementation can be more complex compared to traditional digital 
computing architectures. 

In summary, while analog compute-in-memory architecture offers a few advantages, such as 
energy efficiency, it also presents challenges related to precision, integration, and design 
complexity that need to be carefully addressed before it is ready for high volume deployment in 
Data Centers or Edge.  

Technology Challenges and Market Needs 

Two key technology challenges are challenging the supremacy of the von Neumann CPU and by 
extension, the GPU architecture.  

General Purpose GPUs Are Not Keeping Up with Compute Demand 
As ChatGPT demonstrated the fastest adoption of any technology to-date, the underlying 
generative AI technology and large-language models (LLMs) have tremendous promise of 
increasing productivity of many applications. This has led to an exponential rise in compute 
demand that is currently met with general purpose GPUs, primarily from Nvidia and AMD. 
Unfortunately, traditional GPU architectures are not suitable for these emerging AI workloads, 
which need compute to scale 750 times or more every 2 years, as shown by the red line in chart 
below (see Figure 9). Furthermore, these general-purpose GPUs traditionally relied on Moore’s 
law scaling that delivered 2x transistor packing density and roughly the same 2x improvement in 
performance every 2 years, as illustrated by the gray line in the image below.   
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Figure 9: Training FLOPs Scaling 
Source: https://medium.com/riselab/ai-and-memory-wall-2cb4265cb0b8 

 

Memory and IO Bandwidth Are Not Keeping Up with AI Workload Demand  
Besides falling short of meeting the compute demands ~3x/2 years vs 750x/2 years required for 
training Transformer network, the external memory and IO are not keeping up with the 
generative AI workload demand either as illustrated by green and blue trajectories respectively 
(see Figure 10).  

 

Figure 10: Scaling of Peak Hardware FLOPs 
Source: https://medium.com/riselab/ai-and-memory-wall-2cb4265cb0b8 

https://medium.com/riselab/ai-and-memory-wall-2cb4265cb0b8
https://medium.com/riselab/ai-and-memory-wall-2cb4265cb0b8
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Advantages and Business Value 
Compute-in-memory represents a paradigm shift in computer architecture, offering a solution to 
the diminishing returns traditional processors have been facing of controlling power while 
increasing performance.  

1. High power efficiency and low power consumption: 

CIM architectures can compute on data that is in memory. Specifically, data computations within 
the storage elements can have compute operations applied in-place and looped if required for 
iterative processing to build up complex functions with reduced instructions and minimal data 
transfers to storage memory. Data transfer power associated with CIM architectures can also be 
very low compared to traditional von Neumann architectures by keeping additional memory very 
close. The combination of these characteristics can offer orders of magnitude less power than the 
comparable distances in traditional von Neumann architectures, which rely on data transfers 
from register files and various levels of cache memory to the processing elements for all 
compute operations.  

2. Sustainable Application Performance: 

Because compute-in-memory devices are inherently storage, immediate shaped inputs from 
sensors can be placed in them for processing. With appropriate register buffer memory and I/O 
port architecture devices can be achieved that offer “through-wire” processing or “bump-in-the-
wire” processing for real-time data. This provides a paradigm change in low power and high 
throughput which can be taken advantage of for AI and HPC processing for real-time edge 
applications. These architectures are capable of eliminating application memory bottlenecks for 
models that can be housed in its array. This leads to 100% core utilization. 

3. Scalability: 

Systems utilizing compute-in-memory components can potentially scale as you would add 
memory to a system: by merely adding more components and without the need for complex 
connectivity. Using this methodology, it becomes quite normal to have a single low-cost server 
system with many cards in place. Massive datacenter magnitude scaling now becomes possible 
with commodity 10gE server interconnects. 
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Conclusion 

Compute-in-memory represents a significant shift in computing paradigm with proven SRAM 
technology that is ready for high volume deployment. As the cost of compute and memory—in 
terms of energy, cooling, and diminishing returns on scale—continues to increase and the 
volume of data generated by businesses grows, compute-in-memory is becoming an increasingly 
vital component of modern IT infrastructure, enabling applications and actions that were 
previously economically unattainable. This whitepaper serves to clearly describe a true digital 
compute-in-memory architecture and contrast it with alternative architectures, particularly near-
memory and PIM. We would like to leave you with a simple checklist or test to determine 
whether the architecture is true compute-in-memory. If the architecture that is evaluated does not 
meet the criteria below, they are not compute-in-memory. 

CIM—Simple Checklist/Test 

There are myriad implementations in industry referred to as compute-in-memory. Here is a 
simple list of checks that should define true compute-in-memory architecture.  

1. Computation occurs where the data resides. For example, external sensor data could be 
stored in the compute structure, rather than storage memory. This data can then be 
computed in place, without moving from storage memory. This data transfer savings is 
significant to performance and low power performance of CIM.  
 

2. Local or Register memory is not required for the compute operation but may be available 
to quickly transfer in new data or switch tasks. 
 

3. Compute logic, if present, is embedded within the memory lines themselves, typically 
within a few microns. This characteristic is the most open to re-interpretation, as ALUs or 
computation blocks may be embedded with memory. Such structures will be greater than 
100 microns from memory and will not conform to rule 1 above. 
 

4. Offers the lowest data movement overhead (pJ/bit) and the best TCO measuring 
performance and power. 
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Endnote 

1. Word—While not technically precise, this term is used in this paper to reflect different 
widths that may be inherently stored in a memory. In computer architecture, various 
words, bytes, words, long words, etc. are used to reflect the different widths possible. For 
simplicity these are all attributed to the use of “word” in this description. 
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